
SCTA Documentation
Release 1.0

J.L. Perez, D.M. Hu

May 18, 2022

Contents

1 Installation & Network Setup 3
1.1 VISA Drivers . 3
1.2 SNMP Drivers . 8
1.3 Git Version Control . 8
1.4 Anaconda v.s. Python . 12

2 Getting Started 19

3 User’s Guide to SCTA 21
3.1 Summary . 21
3.2 Specification Libraries . 23
3.3 Transponders . 25
3.4 Equipment Classes . 31
3.5 Test Templates . 42
3.6 Logging Measurements & Debug Messages . 44

4 Developer’s Guide to Maintaining/ Extending SCTA 49
4.1 Unit Testing . 49
4.2 Simulating Instruments . 50
4.3 Sphinx Documentation . 50
4.4 Advice from Previous Developers . 50

5 Motivational Quotes 53

6 Indices and tables 55

i

ii

SCTA Documentation, Release 1.0

Warning: This documentation is under construction. Please check regularly for updates.

Imagine all the manual configuration it takes to accurately measure something as simple as channel power on a spec-
trum analyzer like the Rhode & Schwarz FSW:

Now you don’t have to! In the time it takes to make one manual measurement, this automation script can make 20:

With these automation libraries you can spend less time making repetitive signal measurements and more time ana-
lyzing the data. You can even automate trivial monitoring tasks anytime, anywhere.

Contents

Contents 1

SCTA Documentation, Release 1.0

2 Contents

CHAPTER 1

Installation & Network Setup

Note: You must have Administrator priveleges to do the following installations.

Warning: Most of the installation can be done on either Linux or Windows. However, the SNMP drivers
we use only support Windows machines. So, if you want to interact with any equipment over SNMP, you
must use a Windows machine. Our sincerest apologies.

Prerequisites We expect some familiarity with using your computer’s command prompt/ terminal utility.

Hardware Requirements The SCTA libraries have only been tested with the following environment:

• Intel i5-4590 CPU @ 3.30GHz

• 8GB RAM

• 64-bit OS

• Windows 7 Professional

Tips

• none

Contents

1.1 VISA Drivers

The SCTA libraries use the Virtual Instrument Software Architecture (VISA) standard I/O commands to
control our lab equipment. The VISA standard is widely accepted by the Test & Measurement Industry,
such as National Instruments, Rhode & Schwarz, and Keysight Technologies. We will be installing VISA
equipment drivers provided by National Instruments.

3

https://en.wikipedia.org/wiki/Virtual_Instrument_Software_Architecture

SCTA Documentation, Release 1.0

1.1.1 Installing NI-VISA

Hint: Search your programs for NI-VISA. If you already have NI-VISA installed, skip this section.

If you do not have NI-VISA installed, go to the downloads page at the National Instruments website.

You may have to login with an existing National Instruments account. Download the latest NI-VISA
Run-Time Engine.

Note: The SCTA libraries have been tested with NI-VISA version 16.0

1.1.2 Updating NI-VISA

In programs, open the NI Update Service.

If you see a red banner telling you to update the NI Update Service, click the Update button.

Click Yes when asking to allow changes to the computer. When prompted, accept all license agreements.
When the update is complete, you will be prompted to restart the computer.

4 Chapter 1. Installation & Network Setup

http://search.ni.com/nisearch/app/main/p/bot/no/ap/tech/lang/en/pg/1/sn/catnav:du,n8:3.1637,ssnav:sup/

SCTA Documentation, Release 1.0

After restarting, open NI Update Service again. The red banner should be gone. The Critical
Updates section should already be expanded, but also expand the Upgrades and Service Packs
section. Check anything related to NI-VISA under the Driver Software sections.

1.1. VISA Drivers 5

SCTA Documentation, Release 1.0

When prompted, accept all license agreements. When the drivers are installed, you will be prompted to
restart the computer.

6 Chapter 1. Installation & Network Setup

SCTA Documentation, Release 1.0

1.1.3 Installing GPIB drivers

Warning: Please ask Luis to fill out this section!

1.1.4 VISA Interactive Control

In programs, open the VISA Interactive Control.

Any equipment connected to the network should be listed under the Devices section.

1.1. VISA Drivers 7

SCTA Documentation, Release 1.0

1.2 SNMP Drivers

Simple Network Management Protocol (SNMP) is an Internet-standard protocol for collecting and orga-
nizing information about managed devices on IP networks and for modifying that information to change
device behavior. SNMP exposes management data in the form of variables called management informa-
tion base (MIB) objects which describe the system status and configuration. These variables can then be
remotely queried and manipulated.

Some RF equipment, like the DM240XR, VTM, and VTR strictly use SNMP for remote interaction.

Instead of using proper Python libraries for interacting over SNMP, we use Windows batch files that im-
plement the SNMP set and get commands. Unfortunately, this restricts our automation libraries to Win-
dows only if you want to interact with equipment over SNMP. The batch files SnmpSet and SnmpGet
can be found under SCTA_repo\install\. Copy the batch files to the C: drive on your Windows
machine.

1.3 Git Version Control

The SCTA libraries are stored on the AMCLAB server in the form of a Git repository. Git is a Version
Control System that developers use to store historical snapshots of code throughout its lifetime. We use

8 Chapter 1. Installation & Network Setup

https://en.wikipedia.org/wiki/Git

SCTA Documentation, Release 1.0

Git to store the most updated version of the SCTA libraries as well as previous working versions. In this
tutorial, you will be downloading the most recent version of SCTA through Git.

Note: The following installation instructions are for Windows PCs only! Installing Git on Ubuntu should
be as simple as an apt-get install git command.

1.3.1 Installing Git

Go to the downloads page at the Git website.

Choose the appropriate installer for your OS. For Windows, it should download an executable. Run it, and
click Yes when asking to allow changes to the computer.

In the Git Setup service, use the default installation destination, components, start menu shortcuts, PATH
environment, line ending conversions, terminal emulator, and extra options. The installation should be
quick.

1.3.2 Cloning the SCTA Libraries

In programs, open Git Bash.

Use Git Bash like any other Command Prompt or Terminal application. It defaults to the computer’s root
directory, but you can change directories using cd and list directory contents using dir. For example,
change to your Documents directory:

cd ~\Documents\

1.3. Git Version Control 9

https://git-scm.com/downloads

SCTA Documentation, Release 1.0

Beyond the default shell commands, Git Bash also has Git commands built-in. To see a list of all available
commands run:

git --help

Note: To run the following commands, you must be on the same network as the AMCLAB server. You
must also know the AMCLAB server password. Ask someone from the lab for access.

To “download” the SCTA libraries, we will use Git to clone the SCTA repository from the AMCLAB
server to our local machine:

git clone amclab@10.23.121.10:~/amclab-git/SCTA_repo.git

If prompted to trust the authenticity of amclab, enter “yes”. When prompted for a password, enter the
password. After doing the clone, you should see a new directory called SCTA_repo.

10 Chapter 1. Installation & Network Setup

SCTA Documentation, Release 1.0

If you change into the SCTA_repo directory, you should see a README file that explains the contents of
the repository. You should also see the prompt is “decorated” with (master). This refers to the current
Git branch any of your commit s will be saved to. However, this is beyond the scope of this tutorial.

Hint: However, we highly recommend you come back to this later and use Git Version Control utilities
when working on any serious programming project. There are several Git tutorials that show you how to
view historical changes.

To be safe, remove the AMCLAB server’s original repository address so that you won’t ever accidentally
write changes to the master copy of our SCTA libraries:

git remote rm origin

If you run the git remote command, nothing should be printed to the prompt.

1.3. Git Version Control 11

https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History

SCTA Documentation, Release 1.0

1.4 Anaconda v.s. Python

No, this is not an epic battle between the two largest snakes in the world.

The SCTA libraries form a Python package that you run using the Python programming language. Python
is powerful for its wealth of open-source packages and support from the online community. However,
managing these packages and their dependencies can be tedious and prone to error, especially on Windows
machines. Our solution to this is the Anaconda package manager. Anaconda has servers dedicated to
hosting Python packages, including PyVISA, which is a Python API to the VISA Drivers. Anaconda also
provides command line tools for organizing our packages into environments that save the state of our
packages for easy redeployment onto a new machine. All of this is explained in the following tutorial.

1.4.1 Installing Anaconda

Go to the downloads page at the Anaconda website.

Choose Anaconda2-4.2.0-Windows-x86_64.exe (Python 3.5 version, 64-bit installer). If it
prompts you with an advertisement to email you more materials, click “No Thanks”. For Windows, it
should download an executable. Run it, and click Yes when asking to allow changes to the computer.

12 Chapter 1. Installation & Network Setup

https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Anaconda_(Python_distribution)
https://repo.continuum.io/archive/index.html

SCTA Documentation, Release 1.0

In the Anaconda Setup service, agree to the license agreement and use the default installation destination.
In the “Advanced Installation Options”, use the default options if you don’t already have Python installed
on your machine. If you already have Python installed, you can check or uncheck the options based on
your preference. The installation should be quick.

1.4. Anaconda v.s. Python 13

SCTA Documentation, Release 1.0

1.4.2 Anaconda Basics

In programs, open Anaconda Prompt.

Use Anaconda Prompt like any other Command Prompt or Terminal application. It defaults to the user
home directory, but you can change directories using cd and list directory contents using dir. For exam-
ple, change to your Documents directory:

cd Documents

Beyond the default shell commands, Anaconda Prompt also has conda commands built-in. To see a list
of all available commands run:

conda --help

14 Chapter 1. Installation & Network Setup

SCTA Documentation, Release 1.0

Note that the prompt is “decorated” with <C:\Users\labuser\Anaconda3>. This refers to the
default Anaconda environment any of your Python code will be running in. To see which packages are
in this environment:

conda list

Later in the tutorial, we will be creating a much more slimmed down environment specifically for
running our SCTA code.

Update the conda package manager for good measure:

conda update conda

Hint: For more advanced commands and environment management, try this tutorial.

1.4.3 The Easy Way: Cloning our SCTA Environment

Note: To run the following commands, you must first complete the Git Version Control Installation. After
cloning the Git repository, you should have the SCTA_repo directory.

To clone our SCTA Environment:

cd SCTA_repo\install\Anaconda3\envs
conda env create -f SCTA-environment.yml

Once the environment is created, activate it and check that pyvisa v. 1.8 was linked to the environ-
ment:

activate SCTA
conda list

The output should look something like this.

1.4. Anaconda v.s. Python 15

http://conda.pydata.org/docs/using/envs.html

SCTA Documentation, Release 1.0

Note: To run any SCTA code, you MUST REMEMBER to activate SCTA. This is how you “link”
the pyvisa package that we use extensively in the SCTA libraries.

1.4.4 The Hard Way: Creating your own SCTA Environment

If you wish to create your own SCTA environment, first create an environment with Python 3:

conda create --name SCTA python=3

This will include Python 3’s package manager and other base Python 3 packages. When prompted to
proceed, enter “y”. After it is complete, activate the environment:

activate SCTA

You should see that the prompt is now “decorated” with <SCTA>.

16 Chapter 1. Installation & Network Setup

SCTA Documentation, Release 1.0

Now, we will install all other necessary packages to run our SCTA code. Install them using:

conda install -c conda-forge pyvisa=1.8

When prompted to proceed, enter “y”. Check that pyvisa v. 1.8 was linked to your environment:

conda list

1.4. Anaconda v.s. Python 17

SCTA Documentation, Release 1.0

Repeat the procedure for paramiko and scipy packages.

Note: You can follow a similar process to install pyvisa, paramiko, and scipy into a Python
virtualenv using pip install commands.

1.4.5 Adding SCTA to your PYTHONPATH Environment Variable

If you want import SCTA to work in your Python scripts out-of-the-box, you will need to modify
your PYTHONPATH environment variable. This is because Python searches the PYTHONPATH for any
libraries you import.

One way to do this is to configure Anaconda to modify PYTHONPATH for you ev-
ery time you activate SCTA. To do this, you need to add special batch files
to your Anaconda installation directories. The batch files env_vars can be
found under SCTA_repo\install\Anaconda3\etc\conda\activate.d\ and
SCTA_repo\install\Anaconda3\etc\conda\deactivate.d\.

Follow this guide to place these batch files in the appropriate Anaconda installation directories, and modify
the SCTA_repo\install\Anaconda3\etc\conda\activate.d\env_vars batch file to add
the correct path to SCTA_repo\src on your own machine.

Hint: For me, the location of my Anaconda environment was
C:\Users\labuser\Anaconda3\envs\SCTA. It may not be the same for you.

18 Chapter 1. Installation & Network Setup

https://conda.io/docs/using/envs.html#windows

CHAPTER 2

Getting Started

Prerequisites Basic knowledge of how to run python scripts through commandline

I recommend running the interactive Jupyter Notebook tutorials:

cd SCTA_repo\src\tutorials
jupyter notebook

Note: You need to install jupyter in your SCTA environment to run the interactive tutorials.

If you are new to scripting in Python, walk through the Python-Basics.ipynb to get a quick intro to
concepts important for using the SCTA libraries.

Walk through the SCTA-Basics.ipynb to help you start writing a simple automation script.

If you do not have jupyter installed or do not want an interactive tutorial, there are equivalent tutorials as
python scripts in SCTA_repo\src\tutorials\. The Python-Basics.py script introduces Python
programming and SCTA-Basics.py script introduces the SCTA libraries. You can run the scripts to see the
output:

cd SCTA_repo\src\tutorials
python SCTA-Basics.py

After walking through the tutorials, browse SCTA_repo\src\examples\ for real examples of automation
scripts. You can use these as templates for your own scripts. For example, check out NetAnDemo.py for a
common frequency sweep test.

19

SCTA Documentation, Release 1.0

20 Chapter 2. Getting Started

CHAPTER 3

User’s Guide to SCTA

Prerequisites People reading this document should have an understanding of basic Python objects:

• lists

• dictionaries

• classes

Contents

3.1 Summary

The Space & Communications Test Automation (SCTA) libraries form a general purpose satellite test
API. It can be used for any kind of Communications Lab/ ODU testing, monitoring and evaluation.

Our goal is to build reusable, modular code that makes any kind of testing or monitoring easy to do in
code that satellite communications engineers can understand.

3.1.1 Simple test script

Imagine you want to measure the signal-to-noise ratio (SNR) of a satellite transponder generated by a
Rhode & Schwarz RF modulator (BTC) across all operating frequencies of a coaxial cable (L-band).
Perhaps your lab setup might look like this.

Here is an example of an automation script that is very easy to read, understand, and modify for your own
custom tests.

Initialize equipment and output file
mod = BTC()
dut = VTR()
csv = DataLogger("measurements.csv")

(continues on next page)

21

https://docs.python.org/2.7/tutorial/datastructures.html#more-on-lists
https://docs.python.org/2.7/tutorial/datastructures.html#dictionaries
https://docs.python.org/2.7/tutorial/classes.html

SCTA Documentation, Release 1.0

Fig. 1: Block diagram of a SNR measurement setup. The DUT is tuned to a noisy transponder generated by the BTC.
The SNR is measured across L-band frequencies.

(continued from previous page)

Test DUT on a DVB-S2 MODCOD 13 transponder, i.e. 8PSK 2/3
txpdr = Transponder(mode=13)
mod.setTransponder(txpdr)
dut.setTransponder(txpdr)

Test performance across L-band frequencies, i.e. 250 - 2150 MHz
Lband = list(range(250e6, 2150e6, 10e6))

Take SNR measurement at each frequency
for freq in Lband:

mod.setFrequency(freq)
dut.setFrequency(freq)
snr = dut.getSNR()
csv.push(snr)

3.1.2 Software architecture

This is a basic breakdown of the software modules. At the highest level, the user will interact with test
templates that automate common calibration and measurement routines. The user can specify what to log
and where to save it. At the lowest level are the equipment specific functions to control the most common
test instruments.

22 Chapter 3. User’s Guide to SCTA

SCTA Documentation, Release 1.0

3.2 Specification Libraries

Warning: This must be updated regularly! Always read through these libraries before writing
any test script. Make sure they contain the most updated specifications relevant to your test.

The Specification Libraries contain all the up-to-date specifications and pass/fail criteria. This includes
the MODCOD Specification Table , Scrambling Code Table , and ODU Specification Table . All test
procedures use these libraries to determine the correct test conditions and evaluation, so it is imperative
that all updates to the DVB-S2 Specification are reflected here.

More importantly, the Specification Libraries provide one simple interface to reconfigure all existing au-
tomation scripts for your own test spec. Adapting these libraries is as simple as modifying or adding a
CSV file. Feel free to modify or add specifications that are relevant to your own tests.

3.2.1 MODCOD Specification Table

The MODCOD Specification Table stores the C/N Threshold for Quasi-Error Free (QEF) performance
for each MODCOD specified in the DVB-S2 Specification (EN 302 307-1). It is implemented as a
dictionary of MODCOD Spec Entries addressed by mode number. These values are extracted from
the raw/DVBS2_Spec.csv file, and thus the values can be easily modified by making changes to this
file.

All values are sourced from EN 302 307-1 V1.4.1 Table 12 (p.32) and Table 13 (p.36). Also see the
DVB-S2 Implementation Guidelines (ETSI TR 102 376) for typical transponder settings.

3.2. Specification Libraries 23

http://www.etsi.org/deliver/etsi_en/302300_302399/30230701/01.04.01_60/en_30230701v010401p.pdf
https://www.dvb.org/resources/public/standards/a171-1_s2_guide.pdf

SCTA Documentation, Release 1.0

Fig. 2: DVB-S2 modulation and coding system block diagram. Physical Layer Scrambling is performed before mod-
ulation for efficient energy dispersal.

Note: This table is used in the Mode Class to initialize MODCOD Mode instances.

Attributes

• Mode number

• Broadcast Standard

• Modulation

• Code Rate

• QEF Point

• SNR threshold

Code Example

This is how to access information about MODCOD Mode 1.

>>> MODCOD_Spec.getBroadcastStandard(1)
'DVB-S2'
>>> MODCOD_Spec.getConstellation(1)
'QPSK'
>>> MODCOD_Spec.getCodeRate(1)

(continues on next page)

24 Chapter 3. User’s Guide to SCTA

SCTA Documentation, Release 1.0

(continued from previous page)

'1/4'
>>> MODCOD_Spec.getCNRThresh(1)
-2.35
>>> MODCOD_Spec.getQEFpoint(1)
1e-7

3.2.2 Scrambling Code Table

The Scrambling Code Table is a dictionary of Physical Layer (PL) Header Scrambling Sequences,
Sequence IDs, and Gold Codes specified in the DVB-S2 Specification. There are 262,142 entries addressed
by sequence ID.

All values are sourced from EN 302 307-1 V1.4.1 Section 5.5.4 Physical Layer Scrambling (p.34). Also
see this ETRI Journal article for an algorithm for scrambling code estimation.

Attributes

• Sequence ID (decimal)

• PL Header Scrambling Sequence (octal)

• Gold Code index (decimal)

• Gold Code seed (hex)

• Concatenated Header + Gold Code (hex)

Code Example

Here is how to access information about Scrambling Code 0.

>>> Scrambling_Spec.getPLHeader(0)
'000000000000000000000000000000'
>>> Scrambling_Spec.getGoldCode(0)['index']
'0'
>>> Scrambling_Spec.getGoldCode(0)['seed']
'0x00001'
>>> Scrambling_Spec.getConcatenated(0)
'0x000000000000000000000000001'

3.2.3 ODU Specification Table

Warning: unimplemented

3.3 Transponders

What is a Transponder? Wikipedia says, “it is a device that gathers signals over a range of uplink fre-
quencies and re-transmits them on a different set of downlink frequencies.”

3.3. Transponders 25

http://www.etsi.org/deliver/etsi_en/302300_302399/30230701/01.04.01_60/en_30230701v010401p.pdf
http://onlinelibrary.wiley.com/doi/10.4218/etrij.14.0213.0444/full
https://en.wikipedia.org/wiki/Transponder

SCTA Documentation, Release 1.0

However, in the SCTA Libraries, a Transponder is certainly not a device, or even a class that represents
a device. It is an interface between the RF modulated signal and the lab equipment. It is a class that
stores only the signal characteristics necessary for the equipment to generate, frequency translate, tune,
and measure the signal.

There are many important signal characteristics to define, so the Transponder Class is broken down into
sublasses: the Mode Class and Local Oscillator Class. There are also convenient ways to group together
similar transponders using Transponder Sets.

Hint: For a quick example of creating a Transponder, jump to the Transponder Constructor method.

3.3.1 Mode Class

The Mode class stores the parameters associated with a mode in the MODCOD Specification. The MOD-
COD Specification Table uses Modes to define the 32 DVB-S2 operational mode configurations and their
corresponding SNR and PWR thresholds required to close the satellite link. The Transponder Class defines
transponders using modes, including, but not limited to, the ones defined in the MODCOD Spec.

Hint: You can easily create a custom mode or a predefined mode from the MODCOD Spec. See the
Mode Constructor method for an example.

Attributes

• Broadcast Standard

• Modulation

• Code Rate

Methods

Contructor Description: A mode object can be initialized 2 different ways. One way is to individually
specify broadcast standard, modulation, and code rate. The other way is to specify the MODCOD
mode index as an integer in {1, 2, . . . , 24}.

Inputs: all attributes

Outputs: instance of the Mode class

Option 1
mode1 = Mode(bcstd="DTV", mod="QPSK", fec="1/2")

Option 2
mode1 = Mode.fromMODCOD(1)

Both definitions are equivalent

26 Chapter 3. User’s Guide to SCTA

SCTA Documentation, Release 1.0

Class definition

class Mode(object):

def __init__(self, bcstd='DTV', mod='QPSK', fec='1/2'):
"""Constructor.

Default values create a MODCOD Mode 1

~~~~~ Possibilities ~~~~~
bcstd: "DTV", "DVB-S", "DVB-S2"
mod: "QPSK", "8PSK"
fec: "1/2", "3/5", "2/3", "3/4", "4/5",

"5/6", "6/7", "7/8", "8/9", "9/10"

"""
self.bcstd = bcstd # BroadCast STandarD
self.mod = mod # Modulation
self.fec = fec # FEC Rate

@classmethod
def fromMODCOD(cls, index):

bcstd = MODCOD_spec[index]["bcstd"]
mod = MODCOD_spec[index]["mod"]
fec = MODCOD_spec[index]["fec"]
return cls(bcstd, mod, fec)

3.3.2 Local Oscillator Class

In a satellite broadcast system, a transponder goes through many frequency translations in its lifetime. The
3 main stages are upconversion at the broadcast center, translation at the satellite, and downconversion
at the LNB. Each stage has its own local oscillator (LO) frequency. Furthermore, these LO frequencies
are different depending on band: Ku, Ka, etc. The Local Oscillator Class stores this metadata for each
transponder and provides convenient methods for calculating the transponder’s uplink and downlink fre-
quencies.

Attributes

• Band

• Upconverter LO frequency

• Satellite LO frequency

• Downconverter LO frequency

Methods

getDownconversion(inputFreq) Description: Calculates the down-converted frequency based on the in-
put frequency and LO frequency.

Inputs: input frequency [MHz] (float)

Outputs: down-converted frequency [MHz] (float)

3.3. Transponders 27



SCTA Documentation, Release 1.0

getUpconversion(inputFreq) Description: Calculates the up-converted frequency based on the input fre-
quency and LO frequency.

Inputs: input frequency [MHz] (float)

Outputs: up-converted frequency [MHz] (float)

Class Definition

class LocalOsc(object):

def __init__(self, id='LO', freq=0):
"""Constructor.

~~~~~ Possibilities ~~~~~
id: string
freq: positive (float) [MHz]

"""
self.id = id # identifier string
self.freq = freq # LO freq

3.3.3 Transponder Class

The Transponder class is defined by a mode, a local oscillator, and all the downlink signal parameters
associated with a transponder.

Note: All of the Equipment Classes use transponders to generate lab signals and tune demodulators.

Hint: There is a useful predefined list of all DVB-S2 transponders, which you can pick and choose from
using Transponder Sets.

Attributes

• ID

• Mode

• Frequency

• Symbol Rate

• Roll-off

• Scrambling ID

• Pilot Symbols

• Antenna Polarization

• Local Oscillator

28 Chapter 3. User’s Guide to SCTA

SCTA Documentation, Release 1.0

Methods

Constructor Description: The transponder must be initialized with all of the above attributes. The mode
can be either an integer Mode number or an instance of the Mode Class.

Inputs: all attributes

Outputs: instance of the Transponder class

Create MODCOD Mode 1
mode1 = Mode.fromMODCOD(1)

Input downlink parameters
txpdr1 = Transponder(id="anything-you-want", mode=mode1, freq=974e6,
→˓symb=20e6, roll=20, scramb=0, pilot=True)

Equivalent transponder
txpdr1 = Transponder(id="anything-you-want", mode=1, freq=974e6,
→˓symb=20e6, roll=20, scramb=0, pilot=True)

Class definition

class Transponder(object):

def __init__(self, id='txp', mode=1, freq=1074e6, symb=20e6, roll=20,
→˓scramb=0, pilot=True, pol=None, LO=None):

"""Constructor.

Default values Create a MODCOD Mode 1 Transponder @ 1074 MHz

~~~~~ Possibilities ~~~~~
mode: integer Mode number or Mode class instance
freq: float in Hz
symb: float in Baud
roll: [0, 100] %
scramb: [0, 2^18-1]
pilot: False, True (off, on)
pol: "LHCP", "RHCP", "horizontal", "vertical"

"""
self.id = id # human-readable identifier
self.mode = mode # Mode class instance
self.freq = freq # Center frequency
self.symb = symb # Symbol rate
self.roll = roll # roll-off
self.scramb = scramb # Scrambling code
self.pilot = pilot # Pilot symbols
self.pol = pol # Antenna polarization
self.LO = LO # Local Oscillator class instance

3.3.4 Transponder Sets

Sometimes you might want to group together several transponders that are related. Some predefined groups
of transponders are subdivided by:

1. Orbital Slot

3.3. Transponders 29



SCTA Documentation, Release 1.0

2. Satellite

3. Bands

4. Market (CONUS/ spot)

5. HD/ SD

Fig. 3: Cartoon of satellite spot beams in Ku and Ka Bands. We can easily group transponders based on orbital slot,
bands, market, etc.

For example, suppose we are given a group of all transponders from one satellite and a group of all spot-
beam transponders across all satellites. Suppose we want only the spot-beam transponders from that one
satellite. What we want is the intersection of these two groups. To accomplish this, we use python sets.

set In Python, a set is an unordered collection with no duplicate elements.

Hint: For example, say we have a list of transponders, and some of them are identical in mode and
downlink parameters. If we create a set from this list, all the duplicate transponders would be filtered
out, and the list’s original order is not guaranteed.

set operations Python supports set operations like union, intersection, difference, and exclusive or.

For example, we might want to test only the LHCP transponders from satellites in Orbital Slot 101W. We
could make a custom set of all LHCP transponders and intersect that with the predefined set of 101W
transponders. The possibilities are endless.

Here is the corresponding pseudocode:

# Create 3 hypothetical transponders
txpdr1 = Transponder(id='101W-txpdr1', mode=1, freq=250e6, pol="RHCP")
txpdr2 = Transponder(id='101W-txpdr2', mode=1, freq=950e6, pol="LHCP")
txpdr3 = Transponder(id='99W-txpdr5', mode=1, freq=2150e6, pol="LHCP")

(continues on next page)

30 Chapter 3. User’s Guide to SCTA



SCTA Documentation, Release 1.0

(continued from previous page)

# Group the transponders into hypothetical sets
slot101 = set([txpdr1, txpdr2])
lhcp = set([txpdr2, txpdr3])

# I want all slot 101 W, LHCP transponders
intersect = slot101 & lhcp

3.4 Equipment Classes

3.4.1 Comm Class

The comm class will obtain the protocol to communicate with the instruments (GPIB, IP, serial) and will
also pass the resource manager which will be common to all instruments.

Additional methods will be needed to write and read using this class.

class Comm(object)

def __init__(self, protocol, port, config={}, rm)
"""Constructor.

~~~ Valid ranges ~~~
protocol: GPIB, serial, IP
port: String of port of IP address

"""
self.protocol=protocol
self.port=port

if protocol=GPIB then
port=GPIB::'+port+"::'INSTR'

if protocol = IP then
port="TCPIP0::"+port+"::INSTR"

self.instrument=rm.open_resource(port, kwargs=config)

Usage

comm = Comm_Class("IP","192.0.0.0")
mod1 = Modulator(comm)
mod2 = Modulator(comm)
mod_list = [mod1, mod2]
btc = BTC(mod_list)

3.4.2 Modulator Class

class Modulator(Transponder):

def __init__(self, id="mod"):
"""Constructor.

(continues on next page)

3.4. Equipment Classes 31

SCTA Documentation, Release 1.0

(continued from previous page)

~~~ Valid ranges ~~~
ip: IP address
power: [-80, -10] dBm
freq: [250, 2150] MHz
symrate: [20, 45] MBaud
pilots: True, False

"""
super(Modulator, self).__init__( id=id)
self.power = -30

SFU Class

Warning: We have found that different SFUs use different commands for Broadcast Standard and
Code Rate related functions. We have determined this to be caused by two different firmware versions:
fill in here and have implemented a solution that works for both. We try our best to fix the bugs we
find, but there may be more. If an SFU script is buggy, please contact us. If you are a developer, use
the VISA Interactive Control to verify that the commands the script sends actually changes
the settings correctly.

class SFU(Modulator):

def __init__(self, id="SFU", type="GPIB", port="28", config={}):
"""Constructor.

~~~ Valid ranges ~~~
type: [GPIB, IP]
port: [28 or 192.10.10.10]
cnr: [0, 20] dB

"""
super (SFU, self).__init__(id=id)
self.comm = Comm(protocol=type, port=port, config=config)
self.cnr=None

setTransponder(self, transponder) Description: This will set all the parameters of the transponder to the
SFU.

inputs: Transponder attributes

outputs: none

setBroadcastStandard(self, bcstd) Description: Sets the desired broadcast standard

Inputs: (bcstd): DVB-S2, DVBS

Outupts: None

getBroadcastStandard(self): Description: Queries the current broacast standard set on the SFU.

Inputs: none

ouputs: Returns the broadcast standard as: DVB-S2, DVBS

32 Chapter 3. User’s Guide to SCTA

SCTA Documentation, Release 1.0

setPower(self, double) Description: This function will set the SFU power level or it can also be set to the
power level inherited.

inputs: power[double]: power level value in dB.

outputs: (none)

getPower(self) Description: This function will obtain the current power levelon the SFU.

inputs: (none)

outputs: SFU power

setFrequency(self, double) Description: This functions will set the SFU frequency in Hz.

inputs: freq(double): Frequency in Hz.

outputs: (none)

getFrequency(self) Description: This function will obtain the current frequency from the SFU.

inputs: (none)

outputs: (freq in Hz)

setAlpha(self, double) Description: This function will set the SFU symbol rate in S/s.

inputs: symrate(double): Symbol Rate in kS/s.

outputs: (none)

getAlpha(self) Description: This function will obtain the current symbol rate from the SFU.

inputs: (none) outputs: (symbol Rate in S/s)

setNoiseLevel(self, double) Description: This function will set the CNR level on the SFU, once set, the
SFU automatically adjusts its noise level to obtained the input CNR desired.

Inputs: noiseLeveldB[double]: value of CNR level in dB. Range 0 - 20 dB.

Ouput: (none)

getNoiseLevel(self) Description: Queries the current noise level set on the SFU.

Inputs: none

outputs: returns the noise level in dB.

enableNoise(self, boolean) Description: This function will enable or disable noise output.

Inputs: Boolean

Outputs: none

Test code:

>>> import SFU from Equipment_Lib
>>> sfu = SFU(ip=10.23.121.1)
>>> sfu.setNoise(20)
(0/2) setNoise: method called
(1/2) setNoise: turned on bandwidth coupling
(2/2) setNoise: set CNR level

getNoise(self) Description: This function will get the current CNR level on the SFU

Inputs: (none)

Ouput: returns SFU SNR level (double)

3.4. Equipment Classes 33

SCTA Documentation, Release 1.0

setPilots(self, boolean) Description: Sets the Pilots on when True, pilots off when false. inputs: (boolean)

outputs: (none)

getPilots(self) Description: Queries the pilots status

inputs: none

outputs: (boolean) ON:true; OFF;false

setCW(self, boolean) Description: Enables, disables CW, based on boolean:

inputs: (boolean) True: Modulation off, False, Modulation ON

outputs: None

getCW(self) Description: Queries instrument whether CW is enabled or disabled

inputs none

outputs: True; CW enabled, False; CW disabled

setAlpha(self, alpha) Description: Sets roll off for the modulated signal.

inputs: (int) roll off 20, 30, 35

outputs: none

setPhaseNoise(self, boolean) Description: Sets Phase noise for Phase Noise Shape 1, magnitude 13

inputs (boolean): Enables or disables phase noise

outputs: none

getPhaseNoise(self) Description: Determines if Phase Noise is enabled or disabled:

inputs None

outputs:

setModulation(self, modulation) Description: Sets the Modulation type on the SFU for the desired tran-
ponder

inputs DVB-S2, DVBS

outputs: none

getModulation(self) Description: Obtains the current modulation set on the SFU.

inputs: none

outputs: current modulation set on SFU.

setCodeRate(self, coderate) Description: Sets the desired code rate on the SFU

inputs: code rate, 2/3, 3/5, 6/7, 1/2, etc..

outputs: none

setScramblingCode(self, scramb) Description: Sets the scrambling code on the SFU.

input: (int): scrambling code ID

output: none

getScramblingCode(self) Description: Gets the scrambling code ID from the SFU.

inputs none

outputs: Scrambling code ID

34 Chapter 3. User’s Guide to SCTA

SCTA Documentation, Release 1.0

BTC Class

class BTC(object):

def __init__(self, id="BTC", type=GPIB, port=port, numMods=2):
"""Constructor.

~~~ Valid ranges ~~~
cnr: [0, 20] dB
pilots: True, False

"""
self.modulator_list = []
self.id=id
self.cnr = 20
for i in range(numMods):

mod=Modulator(id=id+"-output-"+str(i+1)
self.modulator_list.append(mod)

getCodeRate(self) Description: Sets the FEC code rate on the SFU.

Inputs: code rate 1/2, 2/3, 6/7, etc. . .

outputs: none

setPower(self, pwr, modNumber) Description: This function will set the BTC power level on the cor-
responding output. inputs: pwr (double): power level value in dB. modNumber (int): corresponding
output port outputs: (none)

getPower(self, modNumber) Description: This function will obtain the current power level on the BTC
from the output indicated.

inputs: modNumber (int)- corresponding output port

outputs: BTC power from specified port

setFrequency(self, freq, modNumber) Description: This functions will set the BTC frequency in Hz in
the appropriate output port.

inputs: freq (double): Frequency in Hz. modNumber (int): specified output port

outputs: (none)

getFrequency(self, modNumber) Description: This function will obtain the current frequency from the
BTC.

inputs: modNumber (int): specified output port

outputs: frequency in Hz

setAlpha(self, symb, modNumber) Description: This function will set the BTC symbol rate in MS/s.

inputs: symb(double): Symbol Rate in MS/s. modNumber (int): specified output port

outputs: (none)

getAlpha(self, modNumber) Description: This function will obtain the current symbol rate from the
BTC on the specified port.

inputs: modNumber (int): specified output port

outputs: symbol Rate in MS/s from the specified port

3.4. Equipment Classes 35



SCTA Documentation, Release 1.0

setNoise(self, cnr, modNumber) Description: This function will set the CNR level on the BTC, once set,
the BTC automatically adjusts its noise level to obtained the input CNR desired. Note: this need to
set the bandwidth coupling ON to obtain an accurate measurement.

Inputs: cnr (double): value of CNR level in dB. Range 0 - 25 dB. modNumber (int): specified output
port

Ouput: (none)

Test code:

>>> import BTC from Equipment_Lib
>>> btc = BTC(ip=10.23.121.1)
>>> btc.setNoise(20)
(0/2) setNoise: method called
(1/2) setNoise: turned on bandwidth coupling
(2/2) setNoise: set CNR level

getNoise(self, modNumber) Description: This function will get the current CNR level on the BTC

Inputs: modNumber (int): specifies output port to get noise from.

Ouput: returns BTC SNR level (double)

setPilots(self, boolean, modNumber) Description: Sets the Pilots on when True, pilots off when false.

inputs: (boolean): True; pilots ON, False; Pilots OFF modNumber (int):specifies output port to set
pilots status.

outputs: (none)

getPilots(self, modNumber) Description: Queries the pilots status from the specified port.

inputs: modNumber (int): specifies output port to get pilots status.

outputs: (boolean) ON:true; OFF;false

SLG Class

class SLG(object):
def __init__(self, id="SLG", type="IP", port=port, numMods=32)

"""Constructor.

~~~ Valid ranges ~~~

"""
self.modulator_list = []
self.id=id
for i in range(numMods):

mod=Modulator(id=id+"-output-"+str(i+1)
self.modulator_list.append(mod)

loadScenario(self, Scen) Description: Loads the scenario specified

inputs: Scen[string]: Scenario name which needs to be available in the SLG

outputs: (none)

setPower(self, power, modNumber) Description: Description: This function will set the SFU power
level. inputs: power[double]: power level value in dB.

36 Chapter 3. User’s Guide to SCTA

SCTA Documentation, Release 1.0

outputs: (none)

getPower(self, modNumber) Description: This function will obtain the current power levelon the SFU.

inputs: (none)

outputs: SFU power

setFrequency(self, freq, modNumber) Description: This functions will set the SFU frequency in Hz.

inputs: freq(double): Frequency in Hz modNumber (int): specific output port

outputs: (none)

getFrequency(self, modNumber) Description: This function will obtain the current frequency from the
SFU.

inputs: modNumber (int): specific output port

outputs: (freq in Hz)

setAlpha(self, symb, modNumber) Description: This function will set the SFU symbol rate in MS/s.

inputs: symb (double): Symbol Rate in MS/s. modNumber (int): specific output port

outputs: (none)

getAlpha(self, modNumber) Description: This function will obtain the current symbol rate from the
SFU.

inputs: modNumber(int): specific output port

outputs: (symbol Rate in S/s)

setPilots(self, boolean, modNumber) Description: Sets the Pilots on when True, pilots off when false.
inputs: (boolean) modNumber (int): specific output port

outputs: (none)

getPilots(self, modNumber) Description: Queries the pilots status

inputs: modNumber (int): specific output port

outputs: (boolean) ON:true; OFF;false

setAlpha(self, roll, modNumber): Description: Sets the roll-off value on the specified SLG modulator

inputs: roll: roll-off value as integer modNumber: SLG modulator number to set

outputs: none

getAlpha(self, modNumber): Description: Obtains thed current modulator roll-off/Alpha value:

Inputs: modNumber: SLG modulator number to query roll-off value set

outputs: returns roll off value on specified modulator output

setScramblingCode(self, scramb, modNumber) Description: Sets the scrambling code on the device.

inputs: scramb (int): Scrambing code number to set modNumber (int): specific output port

outputs: (none)

getScramblingCode(self, modNumber) Description: Queries the current scrambling code set on device
on the indicated output modulator

inputs: modNumber (int): specific output port

outputs (int) returns the current scrambling code

3.4. Equipment Classes 37

SCTA Documentation, Release 1.0

setModulatorState(self, boolean, modNumber) Description: Enables or disables the desired modulator
output

inputs: (boolean): True; enable output. False; disable output (modNumber): which modulator to turn
on/off on the current SLG.

outputs: none

getModulatorState(self, modNumber) Description: Queries modulator status on SLG.

inputs: (modNumber) Modulator output to check

outputs: (boolean): True; modulator is on. False; modulator is off.

selectBand(self, band): Description: Selects band range based on the following

3.4.3 Demodulator Class

class Demodulator(Transponder):

def __init__(self, id):
"""Constructor.

~~~ Valid ranges ~~~
id: string

"""
super(Demodulator, self).__init__(id=id)

FSW Class

class FSW(Demodulator)

def __init__(self, id, protocol, port, config)
"""Constructor.

~~~ Valid Ranges ~~~
protocol: GPIB, ethernet, serial
freq: [20, 26.5] GHz

"""
super (FSW, self).__init__(id=id)
self.comm = Comm(protocol=type, port=port, config=config)

config(self, Transponder) Description: Configures the FSW to measure either Channel Power or MER
and power using the Transponder objects.

Inputs: (Transponder): Uses the tranponder objects to configure the FSW

Outputs: none

getAllMeasurements(self) Description: Obtains all measurements from the VSA window.

inputs: (none)

outputs Returns MER, power, phase error, carrier frequency error from VSA.

getSpectrumChannelPower(self, freq, symrate) Description: Measures channel power and returns
measurement

38 Chapter 3. User’s Guide to SCTA

SCTA Documentation, Release 1.0

inputs: (double) frequency (double) symrate

outputs: (double) channel power measurement

FSW.getchpwr(Demodulator)

setfreq(freq)
bw=symrate*1.2
setsymrate(bw)

#set RBW and VBW
#set sweep time
#getmeasurement

return chpwr

setFrequency(self, freq) Description: Sets the input frequency in Hz

inputs: (double) frequency

outputs: (none)

getFrequency(self, freq) Description: obtains the frequency setting for the specified tuner.

inputs: (int): Tuner index

outputs: (double): frequency setting on current tuner

setBroadcastStandard(self) Description: Obtains the modulation and code rate for the tuner indicated.

inputs: (int): TunerIndex

outputs: (string): tuner modulcation and code rate

setAlpha(self, double) Description: This function will set the VTR symbol rate in MS/s.

inputs: (double): Symbol Rate in MS/s.

outputs: (none)

getAlpha(self) Description: This function will obtain the current symbol rate from the VTR.

inputs: (none) outputs: (symbol Rate in MS/s)

VTR Class

class VTR(Demodulator):

def __init__(self, comm, power, freq, symrate, pilots):
"""Constructor.

~~~ Valid ranges ~~~
comm: GPIB, ethernet, serial...
numTuners: number of tuners available
power: [-80, -10] dBm
freq: [250, 2150] MHz
symrate: [20, 45] MBaud
pilots: True, False

"""

(continues on next page)

3.4. Equipment Classes 39



SCTA Documentation, Release 1.0

(continued from previous page)

super (VTR, self).__init__(id=id)
self.comm = Comm(protocol=type, port=port, config=config)

setFrequency(freq, TunerIndex) Description: Sets the input frequency

inputs: (double) frequency (int): Tuner index

outputs: (none)

getFrequency(TunerIndex) Description: obtains the frequency setting for the specified tuner.

inputs: (int): Tuner index

outputs: (double): frequency setting on current tuner

setPower(pwr, TunerIndex) Description: Sets the power level on the appropriate tuner.

inputs: (double): frequency (int): tuner

getPower(TunerIndex) Description: Obtains the power level for the appropriate tuner.

inputs: (int): tuner number

getMode(TunerIndex) Description: Obtains the modulation and code rate for the tuner indicated.

inputs: (int): TunerIndex

outputs: (string): tuner modulcation and code rate

setAlpha(double) Description: This function will set the VTR symbol rate in MS/s.

inputs: (double): Symbol Rate in MS/s.

outputs: (none)

getAlpha() Description: This function will obtain the current symbol rate from the VTR.

inputs: (none) outputs: (symbol Rate in MS/s)

setPilots(boolean) Description: Sets the Pilots on when True, pilots off when false. inputs: (boolean)

outputs: (none)

getPilots() Description: Queries the pilots status

inputs: none

outputs: (boolean) ON:true; OFF;false

setScramblingCode(int, TunerIndex) Description: Sets the scrambling code on the device on the desired
tuner.

inputs: (int): Scrambing code number to set

outputs: (none)

getScramblingCode(TunerIndex) Description: Queries the current scrambling code set on device.

inputs: (none)

outputs (int) returns the current scrambling code

40 Chapter 3. User’s Guide to SCTA



SCTA Documentation, Release 1.0

DM240XR Class

Warning: This class is not being updated right now!!!

class DM240(Modulator):

def __init__(self, ip, power):
"""Constructor.

~~~ Valid ranges ~~~
ip: IP address
power: [-80, -10] dBm
freq: [250, 2150] MHz
symrate: [20, 45] MBaud
pilots: True, False

"""
Modulator.__init__(self, ip, power, freq, symb, pilots)
self.power=power

setPower(power) Description: This function will set the DM240 power level. inputs: power[double]:
power level value in dB. [0dBm to -20 dBm]

outputs: (none)

getPower() Description: This function will obtain the current power level on the DM240.

inputs: (none)

outputs: DM240 power

setFrequency(double) Description: This functions will set the DM240 frequency in Hz.

inputs: freq(double): Frequency in Hz. [950e6 Hz to 2050e6 Hz]

outputs: (none)

getFrequency() Description: This function will obtain the current frequency from the DM240.

inputs: (none)

outputs: (freq in Hz)

setAlpha(double) Description: This function will set the DM240 symbol rate in S/s.

inputs: symrate(double): Symbol Rate in S/s.

outputs: (none)

getAlpha() Description: This function will obtain the current symbol rate from the DM240.

inputs: (none) outputs: (symbol Rate in MS/s)

setPilots(boolean) Description: Sets the Pilots on when True, pilots off when false. inputs: (boolean)

outputs: (none)

getPilots() Description: Queries the pilots status

inputs: none

outputs: (boolean) ON:true; OFF;false

3.4. Equipment Classes 41

SCTA Documentation, Release 1.0

setScramblingCode(int) Description: Sets the scrambling code on the device.

inputs: (int): Scrambing code number to set

outputs: (none)

getScramblingCode() Description: Queries the current scrambling code set on device.

inputs: (none)

outputs (int) returns the current scrambling code

3.5 Test Templates

3.5.1 Frequency Sweep Test Template

Imagine you want to measure the Power or SNR measurement accuracy of a satellite receiver compared to
a vetted RF test instrument like the Rhode & Schwarz FSW. Perhaps your lab setup might look like this.

Fig. 4: Block diagram of a power accuracy test setup. Both the FSW and DUT are tuned to a transponder generated by
the SFU. Since the input signal is split into different paths, the individual path losses to the FSW and the DUT should
be properly accounted for in the data analysis.

This automation script will perform a frequency sweep and measure MER/CNR and power
at both the FSW and the DUT. An analysis of the measurement data can be found in
SCTA_repo\src\examples\RF-Validation-Presentation.ipynb.

from SCTA.Instrumentation import SFU, VTR, FSW
from SCTA.System import Transponder
from SCTA.DataLogging import DataLogger

Initialize equipment

(continues on next page)

42 Chapter 3. User’s Guide to SCTA

SCTA Documentation, Release 1.0

(continued from previous page)

sfu = SFU(type="IP", port="192.10.10.7")
fsw = FSW(type="IP", port="192.10.10.8")
dut = VTR(type="IP", port="192.10.10.9")

Format output file
header=['Frequency (Hz)', 'VTR SNR (dB)', VTR Power (dBm)', 'FSW SNR (dB)',
→˓FSW Power (dBm)']
csv = Log(filename="FrequencySweep", format="csv", csv_header=header)

Test DUT on a DVB-S2 MODCOD 13 transponder, i.e. 8PSK 2/3
txp = Transponder(id="101-txp1", mode=13, freq=974e6, symb=20e6, roll=20,
→˓scramb=0, pilots=False)
sfu.setTransponder(txp)
fsw.setTransponder(txp)
dut.setTransponder(txp)

Test performance across L-band frequencies, i.e. 250 - 2150 MHz
for freq in range(250e6, 2150e6, 10e6):
sfu.setFrequency(freq)
dut.setFrequency(freq)
fsw.setFrequency(freq)

Take measurements and write them to the output file
fsw_meas = fsw.getAllMeasurements()
vtr_meas = vtr.getAllMeasurements()
sample = [freq, vtr_meas['mer'], vtr_meas['power'], fsw_meas['mer'], fsw_

→˓meas['power']]
csv.push(sample)

3.5.2 BER Test Template

Imagine you want to test the frequency sensitivity of a satellite receiver to low power conditions near the
specified QEF point. Perhaps your lab setup might look like this.

Fig. 5: Block diagram of a frequency sensitivity test setup. The DUT is tuned to a low-power transponder generated
by the BTC. The DUT does not lock to the signal at first, so the BTC power is increased until the DUT locks and
measures no bit errors. This QEF point is measured across frequency.

This automation will perform a frequency sweep and find the QEF point
for the DUT. An analysis of the measurement data can be found in
SCTA_repo\src\examples\RF-Validation-Presentation.ipynb.

3.5. Test Templates 43

SCTA Documentation, Release 1.0

from SCTA.Instrumentation import BTC, VTR
from SCTA.System import Transponder
from SCTA.DataLogging import DataLogger
from time import sleep

Initialize equipment
btc = BTC(type="IP", port="192.10.10.7")
dut = VTR(type="IP", port="192.10.10.9")

Format output file
header = ['Frequency (Hz)', 'BTC Power (dBm)', 'Bert Lock', 'Bit Error Rate']
csv = Log(filename="FrequencySweep", format="csv", csv_header=header)

Test DUT on a DVB-S2 MODCOD 13 transponder, i.e. 8PSK 2/3
txp = Transponder(id="101-txp1", mode=13, freq=974e6, symb=20e6, roll=20,
→˓scramb=0, pilots=False)
btc.setTransponder(txp)
dut.setTransponder(txp)

Test performance across L-band frequencies, i.e. 250 - 2150 MHz
for freq in range(250e6, 2150e6, 10e6):

btc.setFrequency(freq)
dut.setFrequency(freq)

Reset power level on the BTC
power = -85
btc.setPower(power)

Run BERT for 5 seconds and check if the BERT is locked AND has no errors
dut.restartBERT()
sleep(5)
dut_meas = dut.getMeasurements()

If not, then increase BTC input power by 0.1 dB
while (dut_meas['Bert Total Bit Error'] != 0) or (dut_meas['Bert Lock'] !=

→˓True):
power = power + 0.1
btc.setPower(power)
dut.restartBERT()
sleep(5)
dut_meas = dut.getMeasurements()

Else, stop the test and log the BERT statistics
sample = [freq, power, aim_meas['Bert Lock'], aim_meas['Bit Error Rate']]
csv.push(sample)

3.6 Logging Measurements & Debug Messages

This page contains all you need to know about how to log measurements and debug messages in your
scripts. It follows the life of a measurement from when you first take it using the equipment get methods
to when you store it in your log file.

Note: Typically, logging debug messages is unnecessary unless you are developing low-level functions

44 Chapter 3. User’s Guide to SCTA

Equipment.html#demodulator-class

SCTA Documentation, Release 1.0

or need low-level information about equipment state.

Hint: For an example of typical measurement logging, jump to Log Class.

3.6.1 Measurement Object

The output of an equipment get measurement method should always be a Python dictionary. The
measurement object stores the measurement value itself along with context about how the measurement
was taken.

Attributes:

• Equipment ID

• Transponder tuning parameters

• Measurement ID, e.g. snr, pwr, etc.

• Measurement value

Here is an example measurement object:

{
"timestamp": "2016-09-26T14:30:04",
"equip_id": "fsw-1",
"txpdr": {

"id": "txpdr-1",
"mode": {

"bcstd": "DVB-S2",
"mod": "8psk",
"fec": "6/7"

},
"freq": 974,
"symb": 20000,
"roll": 20,
"scramb": 1000,
"pilot": "True",
"pol": "None",
"LO": "None"

},
"meas_id": "snr",
"meas_val": 9.5

}

3.6.2 Log Class

The Log Class is an object used to configure what data to store and how to format the output.

Here is an example of typical configuration and use of the Log Class.

snr_log = Log(filename='FSW_SNR', format='csv')
measurement = fsw.getMeas()
snr_meas = measurement['snr']
snr_log.push(snr_meas)

3.6. Logging Measurements & Debug Messages 45

SCTA Documentation, Release 1.0

Hint: Try creating a Log object specific to each equipment, and push measurements of that equipment to
its individual Log. That way, you can save different equipment measurements to different files.

There are 2 possible formats for the output log file: CSV and JSON. If csv is selected, then a list of
measurement values and time stamps are stored and written to separate column in a CSV file. If json is
selected, then a list of Measurement Object s with time stamps are stored in the JSON file format.

Note: JSON stands for JavaScript Object Notation. It uses JavaScript syntax, but the format is text only.
So, it can be read and used as a data format by any programming language. Python dictionaries lend
themselves to JSON formatting due to structure similarities.

Attributes

Each Log includes a timestamp for each measurement object.

• List of time stamp

• List of corresponding measurement objects

Methods

Constructor Description: Configures where the measurements will be written to and what format. If no
filename is specified, samples are not written to a file. If a filename is specified and the format is
csv, then only the measurement value and timestamp will be written to a CSV file. If a filename is
specified and the format is json, then the timestamp will be included in the Measurement Object and
written to a JSON file.

Inputs: filename and format

Outputs: instance of the Log Class

Push(sample) Description: pushes measurement to the list of samples and writes sample to output file

Inputs: instance of Measurement Object

Outputs: Success/ Failure

Class Definition

class Log(object):

def __init__(self, filename=None, format=None):
"""Constructor.

~~~~~ Possibilities ~~~~~
filename: string with no '.'
format: 'csv', 'json'

"""
self.filename = filename
self.format = format
self.sample = []
self.time_stamp = []

46 Chapter 3. User’s Guide to SCTA

http://www.json.org/


SCTA Documentation, Release 1.0

3.6.3 Debug Messages

Error Codes

Debug Class (Parent of all classes to set debug flag and print debug messages)

3.6. Logging Measurements & Debug Messages 47



SCTA Documentation, Release 1.0

48 Chapter 3. User’s Guide to SCTA



CHAPTER 4

Developer’s Guide to Maintaining/ Extending SCTA

Prerequisites We recommend a development environment that includes package control and version control:

• git

• anaconda

• You should clone the SCTA-dev Anaconda environment. Follow The Easy Way: Cloning our SCTA
Environment tutorial, but use the SCTA-dev-environment.yml file instead.

To contribute to the source code, you need a basic understanding of Python packages, debug tools, and test
frameworks:

• import

• logging

• unittest

• nosetests

Most importantly, you need VERY GOOD documentation practices and naming conventions:

• docstrings

• naming

Contents

4.1 Unit Testing

4.1.1 Makefile

For Windows developers, make commands are stored in make.bat. For Linux developers, make com-
mands are stored in Makefile.

To see available commands run:

49

https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository#Cloning-an-Existing-Repository
http://conda.pydata.org/docs/using/using.html
https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python.org/3.5/howto/logging.html#advanced-logging-tutorial
https://docs.python.org/3/library/unittest.html#basic-example
http://nose.readthedocs.io/en/latest/writing_tests.html#test-generators
https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments
https://google.github.io/styleguide/pyguide.html?showone=Naming#Naming


SCTA Documentation, Release 1.0

cd SCTA_repo\src
make help

For example:

make SFU_Test

will run the SFU unit tests and output debug statements to the prompt, while:

make SFU_Progress

will output SFU unit test results to a SFU_Test-log.txt without any debug statements.

4.2 Simulating Instruments

Warning: This will not mimic real instrument output by any means. All instrument output will be the
string “1”.

4.2.1 Import Simulation Configuration

Simply add this import statement at the beginning of your automation script.

from SCTA.Simulation import RunAsSimulation

Run your script. You should notice that each instrument module will print logging.INFO statements
simulating each command sent to the instrument, and each simulated query output received by the instru-
ment.

4.3 Sphinx Documentation

4.3.1 Compiling HTML Documentation

Remember to always clean any existing build before recompiling (or else you might see broken links):

cd SCTA_repo\docs
make clean
make html

Then, open the _build\html\index.html to see the compiled HTML Documentation.

4.4 Advice from Previous Developers

4.4.1 Tips

• Update your __init__.py files whenever you add a new module

• Watch out for those Indent Errors

50 Chapter 4. Developer’s Guide to Maintaining/ Extending SCTA



SCTA Documentation, Release 1.0

• Always check your import statements

• Be careful about querying instruments too quickly. Remember to always wait for operations to com-
plete (OPC)

• If you see a pyvisa error about an “invalid resource handle” or “accessing a resource after it is
closed”, make sure you’ve implemented the __del__() function in your instrument class to close
the pyvisa resource.

• If some data isn’t being pushed properly to the DataLogger, check if your csv header and sample are
equal length. . . Don’t forget any commas between list entries. . .

• Be careful when operating on input lists by reference. . . Sometimes you only need a copy of it

• To enable Jupyter Notebook hide_cell extension, see https://github.com/kirbs-/hide_code/issues/23

4.4.2 Wishlist

• Please fix our import statements DDDD:

• Please figure out how to close our pyvisa resources gracefully during our unittests - Perhaps create
another Manager with a __del__ that closes all of pyvisa ResourceManager’s resources

4.4. Advice from Previous Developers 51

http://stackoverflow.com/questions/8744113/python-list-by-value-not-by-reference
https://github.com/kirbs-/hide_code/issues/23


SCTA Documentation, Release 1.0

52 Chapter 4. Developer’s Guide to Maintaining/ Extending SCTA



CHAPTER 5

Motivational Quotes

53



SCTA Documentation, Release 1.0

54 Chapter 5. Motivational Quotes



CHAPTER 6

Indices and tables

• genindex

• modindex

• search

55


	Installation & Network Setup
	VISA Drivers
	SNMP Drivers
	Git Version Control
	Anaconda v.s. Python

	Getting Started
	User’s Guide to SCTA
	Summary
	Specification Libraries
	Transponders
	Equipment Classes
	Test Templates
	Logging Measurements & Debug Messages

	Developer’s Guide to Maintaining/ Extending SCTA
	Unit Testing
	Simulating Instruments
	Sphinx Documentation
	Advice from Previous Developers

	Motivational Quotes
	Indices and tables

